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ABSTRACT 20 

This review assesses harmful algal bloom (HAB) modeling in the context of climate change, examining 21 

modeling methodologies that are currently being used, approaches for representing climate processes, and 22 

time scales of HAB model projections. Statistical models are most commonly used for near-term HAB 23 

forecasting and resource management, but statistical models are not well suited for longer-term 24 

projections as forcing conditions diverge from past observations. Process-based models are more 25 

complex, difficult to parameterize, and require extensive calibration, but can mechanistically project HAB 26 

response under changing forcing conditions. Nevertheless, process-based models remain prone to failure 27 

if key processes emerge with climate change that were not identified in model development based on 28 

historical observations. We review recent studies on modeling HABs and their response to climate 29 

change, and the various statistical and process-based approaches used to link global climate model 30 

projections and potential HAB response. We also make several recommendations for how the field can 31 

move forward: 1) use process-based models to explicitly represent key physical and biological factors in 32 

HAB development, including evaluating HAB response to climate change in the context of the broader 33 

ecosystem; 2) quantify and convey model uncertainty using ensemble approaches and scenario planning; 34 

3) use robust approaches to downscale global climate model results to the coastal regions that are most 35 

impacted by HABs; and 4) evaluate HAB models with long-term observations, which are critical for 36 

assessing long-term trends associated with climate change and far too limited in extent.  37 

1. Motivation and background 38 

Climate change is expected to affect the frequency, magnitude, biogeography, phenology, and toxicity of 39 

harmful algal blooms (HABs) (Moore et al. 2008; Hallegraeff 2010; Anderson et al. 2015; Wells et al. 40 

2015). Projecting likely responses of HABs to climate change is critical for informing the development of 41 

societal response strategies to mitigate their impacts and requires development and application of various 42 

types of models. Models used to project HAB response range from simple conceptual exercises to 43 

complex, highly resolved dynamical systems (Anderson et al., 2015). Regardless of model complexity, 44 

their efficacy depends on how well fundamental physical, biological, and biogeochemical processes are 45 

represented, as well as the ability to prescribe accurate initial conditions (i.e., model starting conditions) 46 

and model forcing at boundaries (i.e., time series of external variables essential to run the model). The 47 

challenges associated with representing physical and biological processes important for HAB 48 

development and prescribing accurate forcing vary greatly by region, HAB species, and time horizon, and 49 

inevitably introduce some level of uncertainty in model output. HAB scientists have struggled with how 50 

to address this uncertainty, as the complexity and multitude of processes that influence HAB response can 51 

be overwhelming (e.g., Wells et al. 2015). This difficult conundrum of anticipating climate change effects 52 
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but struggling with how to evaluate potential HAB response has been described as a “formidable 53 

predictive challenge” (Hallegraeff 2010), and has inhibited the development of actionable projections to 54 

increase resilience to future HABs.  55 

The term “harmful algal bloom” applies to a diverse subset of algae that cause a variety of negative 56 

impacts when they bloom, including human illness from eating contaminated food, drinking contaminated 57 

water, or breathing harmful aerosols, fish kills, and environmental degradation due to high biomass 58 

(Erdner et al. 2008). Major types of HABs include toxin-producing pelagic diatoms (e.g., Pseudo-59 

nitzchia), dinoflagellates (e.g., Alexandrium, Pyrodinium, Gymnodinium, Dinophysis, Karenia), and 60 

cyanobacteria (e.g., Microcystis, Nodularia); toxin-producing benthic dinoflagellates (e.g., 61 

Gambierdiscus); fish-killing raphidophytes (e.g., Heterosigma); and high-biomass events (e.g., 62 

Phaeocystis, Ulva). Consistent with this diversity in HAB organisms, the expected HAB response to 63 

climate change is also diverse. The sensitivity and even the sign of the response of HABs to climate 64 

change may vary depending on the organism and the setting. For example, increased temperature may 65 

increase growth rates of organisms that are currently at the poleward limit of their thermal habitat at a 66 

particular location, but may also result in some locations becoming too hot to support growth (e.g., Kibler 67 

et al. 2015).  68 

A number of in-depth reviews of climate change impacts on HABs identify a range of potential responses 69 

to environmental factors including warming temperature, increased stratification, altered nutrient 70 

availability and composition, light intensity, and ocean acidity (Moore et al. 2008; Hallegraeff 2010; 71 

Anderson et al. 2015; Wells et al. 2015). HAB response may also depend on how climate change will 72 

affect zooplankton grazers or microbial pathogens that limit their growth, which is particularly difficult to 73 

characterize since grazer activity may also respond to the same changes in environmental factors that 74 

determine HAB response and are also likely to be regionally specific (Wells et al. 2015). Many of the 75 

projected responses of HABs to changing environmental factors rely primarily on theory or laboratory 76 

studies that isolate particular organisms or processes. The derived rates and responses from these culture 77 

studies do not always correspond with those observed in the field, potentially reflecting variation among 78 

isolates, effects of competition, and/or interactions among factors that occur in the environment (Fu et al. 79 

2012; Wells et al. 2015). Consequently, these interactions are typically not well parameterized in HAB 80 

models, if they are included at all. This may lead to greater uncertainty in model projections if 81 

interactions emerge or become more important to HAB formation in the future as a result of changing 82 

climate conditions. 83 

Directly linking changes in observed HAB distribution, frequency, or intensity to shifts in climatic 84 

forcing remains difficult (Moore et al. 2008; Wells et al. 2015), but examples are emerging as time series 85 
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of observations accumulate. Identifying HAB responses (or lack thereof) to anomalous climate events or 86 

natural climate cycles provide the best opportunities for formulating hypotheses as to how HABs might 87 

respond to climate change (Trainer et al., 2019 this special issue). For example, anomalously warm water 88 

associated with the 2014-16 northeast Pacific marine heatwave was associated with an intense, 89 

widespread Pseudo-nitzschia bloom along the U.S. West Coast beginning in spring 2015 that may have 90 

been fueled by the combination of higher growth rates at warmer temperatures and nutrients supplied by 91 

upwelling (McCabe et al. 2016). Increased closures of shellfish harvesting due to domoic acid from 92 

Pseudo-nitzschia and saxotoxin from Alexandrium were linked with anomalously warm sea surface 93 

temperatures off the coast of Oregon during a positive phase of the Pacific Decadal Oscillation (PDO) and 94 

strong El Niño event (McKibben et al. 2015). In the Rias Baixas along the Northwest Iberian Peninsula, a 95 

decrease in upwelling intensity over the past 40 years was linked to increased time scales for flushing, 96 

which corresponded with increased Dinophysis occurrence and shellfish harvest closures (Álvarez-97 

Salgado et al. 2008). The frequency and magnitude of Pseudo-nitzschia blooms off the coast of Southern 98 

California was linked to the PDO and more directly with the North Pacific Gyre Oscillation (NPGO), but 99 

the correlations were weak and exact mechanisms unclear (Sekula-Wood et al. 2011). Long time series 100 

also reveal systems that are not responsive to climate regimes. For example, warm water anomalies in 101 

Puget Sound (Washington State) generated during El Niño winters do not persist into the seasonal 102 

window (summer and fall) when blooms of the dinoflagellate Alexandrium typically occur. Because of 103 

this mismatch in timing, no robust relationship exists between levels of paralytic shellfish toxins in Puget 104 

Sound shellfish and an index of the El Niño-Southern Oscillation (ENSO) (Moore et al. 2010). The use of 105 

models prognostically to represent mechanistic links between climate and HABs enables some hypotheses 106 

of HAB response to future climate change to be tested and remains a research priority.   107 

Most models used to project HAB response at climate time scales (i.e., decades to a century) were 108 

initially developed and applied over shorter time scales (i.e., several days to a season) to provide 109 

hindcasts or forecasts of present conditions. Other reviews have richly detailed the current state of HAB 110 

modeling over shorter time scales (Glibert et al. 2010; McGillicuddy 2010; Flynn and McGillicuddy 111 

2018; Franks 2018), so modeling applications of present conditions will be addressed here only in the 112 

context of how such models might be applied to understand future conditions. As a simplification, most 113 

HAB models can be characterized as being primarily statistical or process-based. Statistical models are 114 

developed from relationships between input and response variables in observations. While they have 115 

proven effective for hindcasts and near-term forecasts, the statistical relationships become less predictable 116 

as forcing conditions shift outside the range of past observations (Flynn and McGillicuddy 2018). 117 

Process-based models may be more robust for projecting HAB response under novel environmental 118 

conditions, but this assumes that the dominant processes remain unchanged under a different set of 119 
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forcing conditions. Additionally, models of response to climate change are dependent on the ability to 120 

predict forcing conditions such as water temperature, wind strength, or river discharge at spatial and 121 

temporal scales relevant to the processes represented in the HAB model. The uncertainty in the 122 

environmental conditions increases greatly with the time scale of forecast, in part because of greater 123 

uncertainty in the global circulation models (GCM) at longer time scales but also because the 124 

unpredictability of human behavior becomes a greater factor. For example, representing the source of 125 

nutrients that might fuel a bloom or affect toxicity could depend on resolving shifts in upwelling wind 126 

intensity or hydrologic response to precipitation events from local watersheds, but changes in land use or 127 

direct anthropogenic nutrient inputs may have even greater effects on regional nutrient concentrations 128 

(Glibert et al. 2010). The paucity of successful HAB models at even interannual time scales and the 129 

uncertainties in predicting future environmental conditions make extending meaningful projections to 130 

climate time scales challenging.  131 

This review examines the state of HAB modeling in the context of climate change. We assess the key 132 

components of modeling HAB response to climate change, starting with an overview of the HAB 133 

modeling methodologies currently in use, reviewing studies that have examined HAB response to climate 134 

change, and offering recommendations on how to move forward by incorporating approaches used in the 135 

broader climate and ecosystem modeling communities. Considerations include the spatial resolution, time 136 

horizon, and forecast accuracy of HAB models developed in the present climate, representation of future 137 

forcing conditions that govern bloom development and transport, and an assessment of whether the 138 

models developed and calibrated under present forcing conditions can adequately represent future 139 

response, or if additional factors might emerge to dominate bloom dynamics.  140 

2. Modeling HABs in the present climate 141 

Most HAB models currently in use for present climate conditions focus on either hindcasts in process 142 

studies or near-term (a few days to seasonal) forecasts for operational and management uses. These 143 

existing HAB models are the most likely bases for projecting future response to climate change. They use 144 

a wide range of methodologies, in part reflecting the diversity of HAB species, the availability of data for 145 

model forcing or calibration, and differences in motivation for model development. Here we broadly 146 

classify HAB models as those that apply statistical (or empirical) techniques, process-based formulations, 147 

or merge multiple approaches (i.e., hybrid models). The categorizations are not meant to be rigid. Other 148 

key model attributes could instead be used to distinguish methodologies, such the level of complexity 149 

from a single organism to full ecosystem, the degree of spatial and temporal resolution, the time scales of 150 

simulation (event, seasonal, interannual, or longer), and whether models are diagnostic hindcasts or 151 

prognostic forecasts. Nevertheless, we find our categorization of the current modeling approaches 152 
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facilitates thinking about how each of the methodologies might be adapted to assess HAB response to 153 

climate change.  A brief summary of the modeling studies reviewed here is given in Table 1, including 154 

this categorization, HAB organism, geographic region, and model type and time scales.  155 

2.1 Statistical models 156 

Statistical models use observations to relate key forcing variables (e.g., a nutrient concentration, 157 

temperature, upwelling wind index, or time of year) to relevant measures of HABs (e.g., the timing of 158 

HAB events or the abundance, toxicity, and spatial distributions of HAB species). A wide range of 159 

forcing variables are typically considered during model development, some of which may be interrelated 160 

(e.g., temperature and time of year, salinity and river discharge). While the choice of forcing variables is 161 

often guided by our understanding (theoretical or empirical) of the underlying physical and biological 162 

processes, statistical models do not attempt to represent those processes directly, only the cumulative 163 

effects of them. Statistical models require extensive observations to develop robust relationships between 164 

forcing variables and HAB response. As such, some of the most compelling examples come from regions 165 

with long records of HAB monitoring and investigation. Examples include Pseudo-nitzschia and 166 

Dinophysis blooms off the Iberian Peninsula and Ireland (Raine et al. 2010; Cusack et al. 2015; Díaz et al. 167 

2016), Pseudo-nitzschia off the U.S. West Coast (Anderson et al. 2009; Lane et al. 2009), Alexandrium in 168 

Puget Sound and the U.S. Northeast (Moore et al. 2009; Ralston et al. 2014), Karenia in the Gulf of 169 

Mexico (Stumpf et al. 2009), and multiple HABs on the Northwest European Shelf and in Chesapeake 170 

Bay (Anderson et al. 2010; Brown et al. 2013). Statistical models are typically used in hindcasting, but 171 

may provide nowcasts if real-time observations of forcing variables are available or limited forecasts if 172 

lags are built in to the model. Alternatively, output from operational physical models can be used in place 173 

of observations to provide input for statistical models, enabling near-term forecasts of HABs. A wide 174 

variety of statistical approaches have been used to model HABs in the present climate, ranging from 175 

simple linear regressions to more complex analyses using artificial neural networks, fuzzy logic, or 176 

Bayesian inference. Here, we highlight a few approaches that have been used to predict the timing and 177 

distribution of HABs.  178 

Statistical analysis of observational data sets that record HAB response to changes in environmental 179 

forcing at climate-relevant time scales can be informative for identifying forcing variables that are climate 180 

sensitive. Past performance is no guarantee of future results, but multi-decadal observations provide 181 

evidence at time scales relevant to climate change of HAB variation with forcing conditions. For 182 

example, in Puget Sound (Washington State), optimal conditions for Alexandrium catenella blooms – 183 

warm air and water temperatures in combination with low river discharge and wind speed – have become 184 

more common over the past 30 years, as have the frequency and duration of toxic blooms (Moore et al. 185 
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2009). In many cases, identification of a “window of opportunity” with increased risk for bloom 186 

development and toxin accumulation, and potential alterations to that window of opportunity with climate 187 

change, is a primary goal of HAB modeling rather than representing specific events or the phytoplankton 188 

community. Another example is a study of a 30-year record of Dinophysis acuta in the rias of northwest 189 

Spain that used a general additive model (GAM) based on upwelling intensity, thermocline depth, tidal 190 

range, and inoculum strength to predict cell abundances. The analysis did not find evidence for increasing 191 

trends in bloom frequency or intensity, nor clear relationships to long-term climate indices like the North 192 

Atlantic Oscillation (NAO) (Díaz et al. 2016). The study did, however, find that an exceptional bloom in 193 

1989-1990 appeared to be associated with high positive anomalies in sea surface temperature (SST) and 194 

the NAO index. That analysis did not extend their GAM to climate time scales. To do so effectively, a 195 

GCM would need to represent the combination of upwelling and solar heating that are ideal for HAB 196 

development. These ideal physical conditions occur relatively briefly and infrequently, and remain 197 

challenging to reproduce in finer scale regional models that would be needed to adequately represent the 198 

blooms (Ruiz-Villarreal et al. 2016).  199 

Forcing variables that represent dominant physical and biogeochemical processes can serve as the basis 200 

for forecasting the timing of HABs. For example, in southwestern Ireland, stratified, wind-driven 201 

circulation during summer months can bring harmful Dinophysis spp. from the continental shelf into 202 

coastal embayments where they can cause toxic events (Raine et al. 2010). A simple model based on the 203 

5-day weather forecast for cross-shore wind and time of year was used to predict Dinophysis import 204 

events and Diarrheic Shellfish Poisoning (DSP) toxicity, and these model results were used to guide near-205 

term shellfish resource management. In Monterey Bay (California), a logistic regression model 206 

incorporating multiple forcing factors including time of year, chlorophyll, silicic acid, water temperature, 207 

upwelling index, river discharge, and nitrate was developed from 8 years of observations and used to 208 

predict the probability of Pseudo-nitzschia blooms (Lane et al. 2009). Similarly, Pseudo-nitzschia blooms 209 

off the coast of Ireland were linked to upwelling, and a statistical model using a wind index, water 210 

temperature, and recent cell densities helped predict the timing, but not intensity, of bloom events 211 

(Cusack et al. 2015).  212 

Statistical models that spatially resolve forcing variables can provide information on HAB distribution 213 

based on habitat suitability for the causative organism. For example, a regression model using satellite 214 

ocean color and sea surface temperature (SST) detected 98% of toxic Pseudo-nitzschia blooms in Santa 215 

Barbara Channel (California) with less than 30% false positive cases (Anderson et al. 2009). In Lake Erie, 216 

satellite imagery of Microcystis spp. bloom extent was correlated with river discharge and nutrient 217 

loading, and could be used to generate a seasonal forecast because of the several month lag between input 218 
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variables and bloom response (Stumpf et al. 2012). In northwest Spain, the presence or absence of 219 

Pseudo-nitzschia blooms in several coastal embayments was linked to location, day of year, temperature, 220 

salinity, upwelling index, and, most importantly, recent bloom occurrence using a support vector 221 

machine, which is a common machine-learning algorithm (González Vilas et al. 2014). In Chesapeake 222 

Bay, a Generalized Linear Model (regression-based approach allowing for both Gaussian and non-223 

Gaussian distributions) was developed with 22 years of cell abundance data and used to make hindcast 224 

maps of Pseudo-nitzschia bloom probability based on factors including time of year, temperature, salinity, 225 

nutrients (phosphate, nitrate, silicic acid), river discharge, dissolved organic carbon, and Secchi depth 226 

(Anderson et al. 2010). Another approach in Chesapeake Bay used output from a physical model as input 227 

for empirical habitat suitability models to make near-term forecasts of HAB occurrence (Brown et al. 228 

2013). The methodologies (neural network or logistic regression) and input variables (time of year, 229 

temperature, salinity, chlorophyll, nutrients, Secchi depth, total suspended solids, dissolved oxygen) for 230 

the habitat models varied for the three HAB species (Karlodinium veneficum, Prorocentrum minimum, 231 

and Microcystis aeruginosa) modeled. This approach relied on both physical model results and extensive 232 

HAB observations for development of the empirical model.  233 

2.2 Process-based models 234 

Process-based (or mechanistic) models use mathematical equations to explicitly simulate key physical and 235 

biological processes that govern HABs and HAB outcomes. Their development requires detailed 236 

knowledge of critical life history characteristics and the factors that modulate them as well as transport 237 

pathways. As such, they require large amounts data to represent the many processes in the system and can 238 

be limited by their parameterizations of rates of growth, mortality, mobility, toxin production, and other 239 

key processes that are typically derived from simplified laboratory studies of isolated strains. In situations 240 

where observational or laboratory data are limited, process-based models instead may be informed by 241 

data on similar organisms or may be limited to focusing on a subset of processes that are particularly 242 

important to bloom dynamics. Because process-based models are more comprehensive than statistical 243 

models, they take more time and effort to develop and are more computationally expensive to run. 244 

Process-based models can be difficult to constrain given the nonlinearity and intermittency of HABs, but 245 

they are usually more transferable across regions because of their explicit representation of physical and 246 

biological processes.  247 

In systems where transport processes are negligible, models based only on biological processes have 248 

utility. For example, in Nauset Estuary on Cape Cod (Massachusetts), a small embayment with limited 249 

exchange and long residence times, interannual variability in timing of A. catenella blooms was 250 

reproduced with a simple model based temperature-dependent growth rates (Ralston et al. 2014). In 251 
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contrast, for many HABs physical transport provides the dominant control on bloom distribution. For 252 

these cases a common approach is to use velocity fields from a circulation model to advect particles that 253 

are representative of the HAB. For example, the accumulation of Dinophysis acuminata in the Bay of 254 

Biscay at temperature and salinity gradients associated with river plumes, and subsequent dispersion of 255 

the bloom by winds and tides, was well represented by passive particle tracking and circulation model 256 

hindcasts (Velo-Suárez et al. 2010). A passive particle tracking approach was also used in a forecast 257 

system for Dinophysis for the rias (drowned river valleys) of the northwestern Iberian coast (Ruiz-258 

Villarreal et al. 2016). Particle tracking similar to that used for oil spills was used for a Microcystis 259 

aeruginosa bloom in western Lake Erie by linking satellite ocean color observations and a hydrodynamic 260 

model, and importantly the study included quantitative skill assessment of the predictions relative to 261 

persistence, or no influence of transport on the bloom (Wynne et al. 2011). 262 

More commonly, both physical and biological processes play important roles in HAB development and 263 

they cannot be treated independently. Individual-based models (IBMs), like passive particle tracking, can 264 

be run within a circulation model or offline using model output to represent advection by currents, but 265 

IBMs also can incorporate biological processes specific to the organism of interest. For example, an IBM 266 

with growth dependent on temperature, mortality dependent on shear and population density, and 267 

phototaxic vertical migration was used to hindcast Karenia mikimotoi blooms along coastal Scotland 268 

(Gillibrand et al. 2016). Results showed a strong dependence on bloom source region and uncertainty in 269 

the biological rate parameters, making the model less practical for forecasts. In the Gulf of Mexico, an 270 

IBM of Karenia brevis that included vertical migration based on internal nutrient ratios was used to 271 

identify potential source regions by running simulations backwards in time (Henrichs et al. 2015).   272 

Rather than IBMs, HAB growth, mortality, and redistribution can also be represented as cell 273 

concentrations within circulation or biogeochemical models. For example, a model of A. catenella that 274 

represents cyst germination, growth dependent on temperature, salinity, nutrients, and light, and mortality 275 

has been used in diagnostic hindcasts and operational forecasts in the Gulf of Maine (Stock et al. 2005; Li 276 

et al. 2009), and a related model that also imposed diel vertical migration was used to simulate A. 277 

catenella in an estuary (Ralston et al. 2015). Those models treated the HAB as independent of the broader 278 

plankton community by simulating only the species of interest and prescribing the nutrient field based on 279 

observations rather than having it evolve dynamically. A more complete ecosystem, biogeochemical, and 280 

circulation model of the northwest European shelf incorporated multiple phytoplankton, zooplankton, and 281 

bacteria functional groups and benthic-pelagic coupling to simulate high biomass events, providing 282 

predictions after calibration to satellite ocean color (Allen et al., 2008).  283 
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In general, the many biological processes that contribute to HAB development remain poorly defined and 284 

present major sources of uncertainty in process-based models. Passive particle tracking models ignore this 285 

and IBM or Eulerian-based hindcasts typically calibrate model parameters within acceptable ranges that 286 

optimally correspond to observed blooms. However, models used to generate forecasts that have 287 

operational utility cannot rely on retrospective calibration, and so many adopt hybrid approaches that use 288 

physical models to predict transport processes along with empirical models to integrate biological 289 

response. For example, near-term forecasts for Pseudo-nitzschia in Bantry Bay in southwest Ireland were 290 

based on the combination of a passive particle tracking model to represent cross-shore advection by 291 

upwelling, a circulation model, satellite observations, and in-situ sensors to characterize local water 292 

properties, and recent toxicity reports (Cusack et al. 2016). Similarly, transport of Pseudo-nitzschia from 293 

formation regions offshore to the coast depending on upwelling or relaxation along the Pacific Northwest 294 

coast of the U.S. was simulated with particle tracking, and the rate of false positives for toxicity events 295 

was reduced by incorporating thresholds for overall phytoplankton abundance from an ecosystem model 296 

(Giddings et al. 2014). A hybrid approach using satellite SST and ocean color along with particle tracking 297 

was used to explain accumulations of Karenia spp. in the eastern Gulf of Mexico (Stumpf et al. 2008), 298 

although bloom forecasts are based primarily on satellite data (Stumpf et al. 2009). Satellite algorithms 299 

for bloom identification are important components of many hybrid systems for early warning, using either 300 

overall levels of chlorophyll-a (Stumpf et al. 2008; Cusack et al. 2016) or specific spectral response like 301 

for Microcystis in Lake Erie (Stumpf et al. 2012). The utility of satellite data in hybrid models depends on 302 

the HAB, as for example in Europe it was found to be useful for early warning of Karenia mikimotoi and 303 

Lepidodinium chlorophorum but not Dinophysis (Maguire et al. 2016). 304 

3. Modeling HABs in a changing climate – what has been done? 305 

Projecting HAB response to climate change involves extending the simulation period of existing HAB 306 

models to decades, centuries, or potentially paleo time scales for retrospective climate analyses. Data 307 

describing future forcing conditions can be obtained from GCM simulations and used as input variables to 308 

HAB models. GCMs forecast ocean circulation and water properties under future climate scenarios 309 

informed by various greenhouse gas concentration trajectories. These scenarios describe a range of 310 

possible futures based on greenhouse gas emissions, economic development, population growth, and 311 

other factors. The output generated by GCMs quantify changes in physical and biogeochemical conditions 312 

and can be combined with statistical relationships from past observations to project changes in HABs. 313 

Additional model layers to represent climate change effects outside of the ocean, such as watershed 314 

hydrology or land use, can also be integrated. This offers a relatively simple approach for examining 315 

climate impacts on HABs, but statistical models become increasingly error-prone when projecting into 316 
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conditions different from the training data set (Flynn and McGillicuddy 2018). This is because the 317 

statistical relationships may represent the cumulative effect of multiple processes or interactions that 318 

cannot be extrapolated, and also because thresholds or tipping points that were not identified or 319 

characterized by prior observations may be exceeded in the projections. Process-based models are less 320 

prone to these potential issues, but they represent only a portion of the physical and biological complexity 321 

due to computational constraints and data limitations, and so even process-based models validated under 322 

present conditions may not simulate many of the hypothesized responses to climate change. Here we 323 

discuss some of the approaches for using statistical and process-based HAB models to project HAB 324 

response to climate change. The different approaches vary in complexity in terms of how many forcing 325 

variables are considered and how they are derived.  326 

3.1 Statistical models 327 

A statistical modeling approach was used to link HAB observations in Puget Sound (Washington State) 328 

with physical observations and climate model forecasts to evaluate long-term shifts in environmental 329 

conditions favorable for blooms (Moore et al., 2011). Based on a 15-year record of paralytic shellfish 330 

poisoning toxins in shellfish tissues, A. catenella blooms were associated with warm air and water 331 

temperatures, low streamflow, weak winds, and small tidal height variability. The relationship was 332 

extrapolated back in time using observations of the forcing variables, and the annual window of favorable 333 

environmental conditions for A. catenella was found to have increased from 1967 to 2006, with two step-334 

like increases occurring in 1978 and 1992 when higher annual values were attained compared to previous 335 

years. The 1978 step change may have been related to the reversal of the Pacific Decadal Oscillation 336 

(PDO) from cool to warm phase in 1977. The 1992 shift did not directly correspond with regional climate 337 

indices, and a lagged response to a regime shift to warmer summer SST off the Washington coast in 1989 338 

could not be distinguished from natural variability. Projections of the statistical relationship using output 339 

from a GCM indicated that by the end of the 21st century, the duration of favorable environmental 340 

conditions for A. catenella would increase by about 2 weeks annually on average (Moore et al., 2011). 341 

Another statistical approach to climate response defined habitat zones for the shelf sea of northwest 342 

Europe based on temperature, salinity, depth, and stratification from regional climate projections, finding 343 

a general northward shift in HAB species composition (Townhill et al. 2018). Species distribution 344 

modeling based on current distributions was projected forward using a maximum entropy approach for 345 

multiple HAB species. On the shelf, Dinophysis acuta and Gymnodinium catanatum had the greatest 346 

northward shift of 200-500 km by 2055, while optimal habitat suitability for three species (A. ostenfeldii, 347 

A. minutum, and P. australis) shifted southward. The southward shift was attributed to factors in addition 348 

to temperature change, including how the regional bathymetry affects habitat suitability. 349 
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Models of HAB response have also been coupled to models of future changes in freshwater or nutrient 350 

delivery from rivers, which are often not resolved in global models. For example, a Bayesian network 351 

model was used to link GCM results with process-based models of watershed hydrology and a lake 352 

ecosystem model to project climate impacts on cyanobacteria biomass in Lake Vansjø (Norway) (Moe et 353 

al. 2016). The Bayesian approach allowed assessment of multiple land use scenarios and incorporation of 354 

monitoring data and expert knowledge in the probabilistic links between nodes. Results suggest that the 355 

benefits of better land-use management were partly counteracted by future warming. 356 

3.2 Process-based models 357 

Temperature is a keystone parameter of climate change, and warming of the sea surface is apparent in 358 

many regions in observational records from satellites and in-situ measurements. Because temperature is a 359 

strong determinant of growth, changes in temperature can be used to approximate changes in potential 360 

growth rates of HAB organisms. Warmer waters may already be affecting bloom dynamics. For example, 361 

sea surface temperature records from 1982 to 2016 were combined with laboratory-based growth rates for 362 

A. catenella (fundyense) and D. acuminata (Gobler et al. 2017). In the North Atlantic, calculated mean 363 

growth rates increased by about 0.01 d-1 over the study period and the duration of favorable growth 364 

conditions increased by 2 to 3 weeks. In the North Pacific trends were less clear, but some regions (the 365 

Salish Sea and coastal Alaska) were identified as having increasingly favorable growth conditions and 366 

HAB prevalence.  367 

Temperature is an important forcing variable in nearly every HAB model of climate response reviewed 368 

here. A number of studies use projected changes in sea surface temperature at certain locations to 369 

approximate changes in growth rates and identify expansions (or contractions) of optimal growth 370 

windows for HAB organisms. The windows are defined as the number of days each year when 371 

temperatures are projected to be within thresholds that support optimal growth (e.g., Moore et al. 2008). 372 

For example, an ensemble of GCM projections were used to quantify changes in temperature-dependent 373 

growth rates of Gambierdiscus and Fukuyoa species, dinoflagellates associated with ciguatera fish 374 

poisoning (CFP), at six sites in the Gulf of Mexico through the end of the 21st century (Kibler et al. 2015). 375 

The results suggest increased abundance and diversity of Gambierdiscus spp. and greater CFP risk in the 376 

Gulf of Mexico, but a shift in the species composition at higher temperatures suggests lower overall risk 377 

in the Caribbean. A similar ensemble approach was used to calculate shifts in the timing of temperature 378 

growth windows for A. catenella and Vibrio spp. bacteria in Puget Sound and Chesapeake Bay, with the 379 

A. catenella bloom period predicted to start 1 month earlier and end 1 month later (Jacobs et al. 2015). In 380 

addition to changes in bloom timing, the study identified geographic shifts in optimal temperature zones 381 

along coastal Alaska for Vibrio, which while not a HAB, presents a methodology that could be applied in 382 
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HAB studies to examine potential latitudinal shifts in species distribution without directly simulating 383 

HAB dynamics.  384 

Potential shifts in the timing of optimal growth windows as well as the spatial distributions of HABs can 385 

be evaluated by utilizing spatially resolved information on future forcing conditions from GCMs or 386 

regional models of climate change rather than projections at a single location. For example, in Puget 387 

Sound, regional scale atmospheric, ocean, and hydrologic models were combined to represent multiple 388 

potential influences on optimal temperature (and salinity) windows for growth of A. catenella (Moore et 389 

al. 2015). Comparing model results for circa-1990 and circa-2050, atmospheric heating was projected to 390 

increase the duration of favorable growth conditions by 30 days per year with the biggest increases in 391 

HAB-favorable conditions occurring in the North Basin and Strait of Juan de Fuca. Changes in the timing 392 

and magnitude of river discharge and upwelling on temperature and salinity were found to have less effect 393 

on calculated growth rates. The study did not address potential changes in nutrient loading due to 394 

upwelling or anthropogenic sources.  395 

In addition to HAB growth rates, warming temperature may also be expected to increase growth rates of 396 

some grazers that prey on HAB species, including zooplankton, benthic invertebrates, and fishes. 397 

Moreover, predator-prey interactions and the response to changing environmental conditions are more 398 

complex than species growth rates, as changes in the distribution, abundance, community composition, 399 

toxicity, and nutritional quality of HAB species may all depend on temperature and can affect the relative 400 

balance of growth rates and loss from predation, and thus bloom development (Wells et al. 2015). 401 

Representing quantitatively the many factors contributing to effects of predation on HAB growth and 402 

decline, including temperature, remains a major challenge for process-based models in both current and 403 

climate change scenarios. To this point, most of the modeling of temperature impacts has focused on 404 

HAB growth rates alone rather than assessing the potentially differential responses of grazers and prey.  405 

The above examples directly link changes in temperature to temperature-dependent growth rates of HAB 406 

organisms to examine changes in bloom timing and spatial distribution. Some other examples also 407 

consider salinity, but the relatively small changes in salinity projected in the study regions meant that the 408 

growth responses were primarily driven by changes in temperature. Nutrients are another forcing variable 409 

that strongly determine growth rates and toxicity of HAB organisms and are projected to be altered by 410 

climate change. For example, a model of the mixotrophic dinoflagellate Karlodinium veneficum and its 411 

algal prey, Rhodomonas salina, was used to simulate growth under various temperature and nutrient 412 

stoichiometry scenarios (Lin et al. 2018). While these scenarios were not directly linked to GCM output 413 

of future climate change scenarios, they were informative of future HAB response and suggest that 414 

warmer, wetter springs combined with increased nitrogen inputs to Chesapeake Bay may be more 415 
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favorable to HAB development. In contrast, GCM output was used as boundary conditions for a coupled 416 

oceanographic and biogeochemical model with four classes of phytoplankton, three for zooplankton, one 417 

for bacteria, nitrogen and phosphorous in different forms, and benthic mineralization on three regional 418 

grids at 1/10-degree resolution to assess conditions for Prorocentrum and Karenia spp. around 2100 419 

(Glibert et al. 2014). The study defined regions of suitable habitat or propensity for toxicity based on 420 

temperature, salinity, and nutrients for two time slices: the period 1980-1990 for the present day and 421 

2090-2100 for the future climate scenario. Model results showed expansion both spatially and temporally 422 

of both species on the northwest European shelf and northeast Asia, and relatively little change in 423 

southeast Asia.  424 

4. Modeling HABs in a changing climate – what should be done? 425 

The fact that relatively few modeling studies quantitatively project how climate change may affect the 426 

distribution and abundance of HAB populations or toxicity is symptomatic of the challenges associated 427 

with this important task. Challenges associated with understanding the biological response of HABs to 428 

climate change, as well as suggestions for best practices that should be employed to address them, are 429 

discussed in Wells et al. (2015); however, little attention was given to the modeling infrastructure needed 430 

to project HAB response to climate change. Generating useful projections of HAB response to climate 431 

change will require engagement with other communities that can help refine the representation of future 432 

conditions in HAB models, including climate scientists, marine ecologists, watershed hydrologists, 433 

invasive species biologists, and environmental managers and policy makers (Glibert et al. 2010). Here we 434 

offer several suggestions to improve modeling of HABs in a changing climate, schematically summarized 435 

in Figure 1.   436 

4.1 Use process-based models 437 

Even though there are challenges associated with uncertainty in model parameterizations, nonlinear 438 

feedbacks, and computing power, process-based models have distinct advantages over statistical 439 

approaches for projecting impacts of climate change on HABs. In many cases, data limitations initially 440 

hinder development of process-based models for emergent HABs or regions without many observations, 441 

and so statistical models can be extremely important in the diagnosis of bloom mechanisms and 442 

development of process-based models. Statistical models are often well suited for shorter-term projections 443 

and management applications, particularly when the models incorporate a dominant influence of periodic 444 

forcing like from ENSO or PDO. Importantly for climate change response, process-based models 445 

explicitly represent physical and biological mechanisms involved in HAB development, and so they are 446 

less likely to lose validity when forcing variables are applied that extend outside of periods of historical 447 
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observation. Incorporating multiplicative effects of changes in temperature, nutrient availability, or 448 

stratification (among other factors) into process-based HAB models requires focused, process-oriented 449 

field or laboratory studies that record organism response beyond just abundance, ideally in the context of 450 

the ecosystem response rather than just for individual strains (Flynn and McGillicuddy 2018). Changes in 451 

HAB severity will depend on the cumulative effects of factors including differential responses of 452 

predators and prey, changing nutrient availability, and shifts in transport patterns rather than a simple 453 

parameter dependence from on lab studies. Circulation models can be directly coupled with ecosystem 454 

models to simulate projected physical and biogeochemical changes at climate time scales. This approach 455 

is intrinsic to many earth system models that have been used to examine changes in ecosystem and 456 

nutrient dynamics globally and regionally using various downscaling methods. For HAB models, the 457 

limited understanding of complex predator-prey interactions and competition among classes within the 458 

ecosystem limit our ability to parameterize process-based models (Wells et al. 2015), and should be a 459 

focus of future research.  460 

Process-based models are typically more complex than statistical models. The introduction of additional 461 

processes and parameters may improve model fit, but can also reduce predictive skill if not based on a 462 

robust representation of the underlying processes (Bell and Schlaepfer 2016). Regime shifts, in which the 463 

dominant processes or forcing variables controlling bloom development change in large, abrupt, and 464 

persistent ways, are particularly challenging to model, and additional complexity may increase variability 465 

in the results without incorporating the relevant combination of stressors leading to the regime shift, 466 

particularly if the model is not validated with data independent from the training region and forcing 467 

conditions. HAB models used to assess climate impacts should be rigorously evaluated to identify model 468 

parameters that most sensitively determine model outcomes, and this should guide efforts to simplify 469 

complex models and to focus laboratory and field studies to refine the uncertainty in those key parameters 470 

(Flynn and McGillicuddy 2018). The development of process-based models requires parallel efforts of 471 

laboratory and observational studies to refine key rate parameters and process dependencies, including the 472 

effects of changes to multiple forcing factors changing simultaneously. The applicability of process-based 473 

models is predicated on validation across a broad set of forcing conditions, and so data collection is 474 

particularly critical for in developing models for HABs in regions that have a sparse history of monitoring 475 

and research. Statistical approaches should continue to play an important role in HAB modeling, 476 

particularly for resource management and public health protection over event to seasonal time scales, but 477 

extending statistical models to predict climate change response has limited merit. 478 

4.2 Use an ensemble approach 479 
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An ensemble approach can be used to address the uncertainty that is introduced to long-term projections 480 

of HAB response from a wide range of sources, including HAB or ecosystem model parameterizations, 481 

variability in the climate model forcing (GCM selection, emissions scenario, downscaling approach), and 482 

the stochastic response of non-linear physical-biological interactions within the model system. An 483 

ensemble approach considers multiple model scenarios to quantify how different choices of key input 484 

factors, and potentially within the model formulation as well, affects the uncertainty in model projections. 485 

The selection of scenarios to use in an ensemble approach depends on the particular application and 486 

available resources, but sensitivity testing based on a subset of potential cases can be used to identify 487 

components of the model system that are particularly important sources of uncertainty in the long-term 488 

response. The central tendency (or “most likely” scenario) of the ensemble might be the focus of analysis 489 

and reporting on the modeling, but it may also be informative to select scenarios that encompass the full 490 

range of possible future outcomes. The process used to develop the scenarios and the sensitivity to 491 

various model aspects within the ensemble provide critical context for interpreting the results and for 492 

guiding future research efforts to minimize or mitigate model uncertainty. 493 

HAB models constitute a small subset of the broader array of ocean biogeochemical models, so models 494 

representing similar processes can provide context for assessing climate change response. A common 495 

approach is to couple global or regional circulation models with biogeochemistry models of varying 496 

complexity to project ecosystem response under future climate forcing. The ecosystem response depends 497 

both on the circulation model and the biogeochemical formulation, so generally an ensemble approach 498 

evaluating multiple, independent models with the same set of forcing conditions provides critical context 499 

for evaluating model results. For example, a study using six climate model simulations along with an 500 

empirical model for predicting chlorophyll from physical model fields projected a global increase in 501 

primary productivity of 0.7-8% in response to warming over the 21st century (Sarmiento et al. 2004). In 502 

contrast, analysis of four coupled climate-carbon cycle models projected a global decrease in primary 503 

productivity of 2-20% (Steinacher et al. 2010). The differences between the results were attributed to 504 

differences in the biological model formulations, in that nutrient availability was incorporated in the 505 

coupled model but not directly in the empirical approach. Both studies found large regional variability in 506 

the response to climate change, as well as regional differences in the agreement among the ensemble 507 

members. Model skill varied regionally depending on the model, so appropriately weighting the ensemble 508 

members based on their skill regionally can provide a better solution than a simple average of ensemble 509 

members, and quantifying the inter-model variation provides a valuable measure of the uncertainty in the 510 

region of interest (Steinacher et al. 2010; Stock et al. 2011). Evaluation of model skill for ecosystem 511 

response requires long-term observations, as discussed in greater detail below. For chlorophyll, 512 

identifying observational declines at both regional and global scales required using Secchi depth 513 
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measurements spanning more than 100 years because fluctuations in chlorophyll at the interannual to 514 

decadal time scales were sufficiently large that long-term trends were not robust over the ~30 years of 515 

satellite data (Boyce et al. 2010). 516 

Modeling studies of climate impacts on HABs have typically examined responses at time scales of 50 to 517 

100 years (e.g., Moore et al. 2008; Glibert et al. 2014; Townhill et al. 2018), as this is when greenhouse 518 

gas concentration trajectories associated with the different potential futures diverge and high emission 519 

scenarios become distinguishable from natural variability. Yet for management and public policy 520 

decisions, characterizing changes in HAB risks at shorter time scales (i.e., decadal) may be more critical. 521 

For physical models, projection of climate response at decadal time scales remains a major challenge 522 

(Zhang and Kirtman 2019). At decadal time scales, both external forcing and internal ocean response can 523 

be dominated by noise, making model response unpredictable. Internal climate variations like ENSO, 524 

AMO, or PDO may dominate responses of key climate variables like upwelling strength or river 525 

discharge, particularly at decadal time scales, swamping trends at century time scales that are more 526 

robustly represented across the suite of climate models. Climate predictability at decadal time scales 527 

varies regionally with the local modes of internal variability, such that some regions have greater 528 

predictability (North Pacific, North Atlantic, Southern Ocean) than others (tropical Pacific) (Zhang and 529 

Kirtman 2019). An understanding of the regional predictability of climate model, including variation 530 

among models, is particularly important for HAB models that are typically only simulating regional 531 

scales at decadal time scales.  532 

Using validation and sensitivity testing to understand uncertainty in HAB models, in addition to the 533 

uncertainty in projections of the physical and biogeochemical conditions, is a critical step prior to 534 

projecting HAB response to climate change. HAB models of present conditions need to include more 535 

thorough assessments of model uncertainty, with ensemble sensitivity studies or more formal means like 536 

Bayesian models that incorporate uncertainty estimates in the results (Anderson et al. 2015), as the 537 

uncertainty compounds when run in climate forecast scenarios. HAB model failures also are instructive 538 

particularly in the context of potential regime shifts with climate change when major shifts in forcing 539 

conditions are not adequately represented in the model setup, as with anomalous conditions that affected 540 

Alexandrium in the Gulf of Maine (McGillicuddy et al. 2011). 541 

Scenario planning is becoming a popular approach for decision-makers to address uncertainty in future 542 

projections and help prepare for conditions that may be substantially different from current conditions 543 

(Star et al. 2016). Scenario planning involves crafting stories about how the world might turn out in the 544 

future, it is not about predicting what will happen. Scenarios are developed around major uncertainties, or 545 

what ifs, in how key parameters m ight change in the future. Scenario planning can combine both 546 
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quantitative and qualitative components, and involve input from researchers as well as stakeholders. 547 

Working through scenarios not only informs the development of societal response strategies to deal with 548 

future HABs, but also helps to understand how socioecological systems work and respond to HABs under 549 

current climate conditions. Benefits from scenario planning include increased flexibility to react quickly 550 

to a changing world, more thoughtful strategic planning and decisions, innovative ideas, early and broad 551 

risk assessment, and increased ability to achieve a common vision (Star et al. 2016). The use of scenario 552 

planning for evaluating HAB response to climate change offers a path forward for addressing some of the 553 

major uncertainties in biological responses identified in Wells et al. (2015) while still providing 554 

actionable projections.  555 

4.3 Use downscaled climate models 556 

Global earth system models typically have spatial resolution too coarse (nominally 1° for CMIP5 557 

generation of climate models) to represent regional variability like tides, river inflows, coastal 558 

topography, or water column structure in detail. Even high resolution global models at 1/12° can’t resolve 559 

features at the scale of the baroclinic Rossby radius (ci/f, where ci is the internal wave speed and f the 560 

Coriolis parameter), which is relevant to coastal upwelling, frontal jets, and buoyant plumes, in more than 561 

90% of the coastal ocean. To get to 70% coverage, 6 times higher resolution would be required (Holt et 562 

al. 2017). Higher resolution regional circulation models provide better model skill for resolving 563 

stratification and variability at seasonal time scales, but linking regional scale models to forcing from 564 

GCMs requires accounting for the coarse resolution and regional biases through downscaling, bias 565 

corrections, and multi-model ensembles (Stock et al. 2011). Resolving physical and biogeochemical 566 

processes at coastal scales is critical for HAB modeling, as the HABs that have the greatest impacts on 567 

fisheries, aquaculture, or through direct exposure typically occur near the coast.  568 

Downscaling from global models can be statistical or dynamical. Dynamical downscaling provides 569 

physically consistent representations of the dynamical system at higher resolution, but it is comparatively 570 

expensive to setup and run the models and remains subject to regional biases in the global models (Stock 571 

et al. 2011). For example, dynamical downscaling was used to model the North Sea at 3 km resolution to 572 

project changes in bottom temperature and salinity, and these physical model fields were used to project 573 

changes in distributions of 75 benthic species (Weinert et al. 2016). The results indicated northward shifts 574 

for about 2/3 of species and southward shifts for the rest, and the downscaled model illustrated the strong 575 

influence of bottom topography on habitat gains and losses. An ensemble of dynamically downscaled 576 

regional models of the Baltic Sea with different nutrient loading scenarios was used to assess hypoxic and 577 

anoxic extent and potential influences of changes in river discharge, air-sea fluxes, and intensified 578 

nutrient cycling (Meier et al. 2011). The variance in biogeochemical response with forcing from three 579 
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physical models with different structures but similar forcing provided a metric of the robustness of the 580 

results relative to model variability.   581 

Statistical downscaling can take various forms, including linear regression, general additive models, and 582 

neural networks, and can link global climate model output variables to variables of interest in a particular 583 

region. Approaches for selecting appropriate downscaling approaches are reviewed elsewhere (e.g., 584 

Wilby et al. 2004; Haylock et al. 2006). The robustness of the downscaling depends in part on the data 585 

available to develop statistical relationships between predictor and response variables, and it requires 586 

keeping a subset of the observations separate from the training data for validation. Statistical downscaling 587 

also faces limitations when extrapolating into climate conditions that are outside the bounds of the 588 

observational record, as model failures may not be apparent even when using independent validation data 589 

from the same parameter space as the training data (Bell and Schlaepfer 2016).   590 

Various statistical downscaling approaches have been used to link climate model outputs to 591 

biogeochemical models at regional, coastal, or estuarine scales. A constructed analogues approach that 592 

represents sharp geographical gradients and daily variability through linear regressions of model output to 593 

observations (Hidalgo et al. 2008) was used to relate air temperatures from GCMs to water temperature in 594 

the San Francisco Estuary, and thus project climate impacts on an endangered fish species (Brown et al. 595 

2016). Four different downscaling methods were trained on 20 years of observations to downscale air 596 

temperature and precipitation fields from four GCMs to the Susquehanna River watershed to generate 597 

inputs to a water balance model and predict changes in surface salinity and temperature in Chesapeake 598 

Bay (Muhling et al. 2018). Those downscaled salinity and temperature projections were combined with 599 

habitat models for three Vibrio species to predict future increases in the seasonal duration and spatial 600 

extent of the pathogens (Muhling et al. 2017). Several examples using statistical downscaling, bias 601 

correction, and ensemble approaches to model climate change impacts on regional fisheries are examined 602 

in Stock et al. (2011), which details many of the considerations in using downscaled climate models to 603 

drive ecosystem forecasts that are relevant to HAB models.  604 

4.4 Evaluate models with long-term observations 605 

Global climate models are known to have biases and skill that vary regionally, and these can be assessed 606 

by comparison with observation records during GCM model hindcast periods. Observations to evaluate 607 

physical parameters like air temperature or wind speed, and to lesser extent water temperature and 608 

salinity, are far more prevalent than long-term observations of biogeochemical parameters like nutrient or 609 

chlorophyll concentrations. Extended time series of HAB abundance or toxicity that are needed to 610 

evaluate HAB model hindcasts at climate time scales are even rarer. Long-term observations of 611 
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biologically relevant data are critical to identify trends in what are often sparse, patchy distributions 612 

(Ducklow et al. 2009), and they also need to be incorporated into assessments of climate forecasts. 613 

Fisheries surveys are an example of a rich data type that has been used to identify decadal scale variability 614 

associated with the PDO or NAO as well as seasonal to interannual variability with ENSO (Lehodey et al. 615 

2006). Models of climate impacts on fisheries incorporate these long-term records into statistical 616 

relationships between physical fields and the response of the variable of interest, and those relationships 617 

can be continually updated as additional data are collected (Hollowed et al. 2009; Hare et al. 2010). The 618 

Continuous Plankton Recorder (CPR) survey is another observational record that goes back more than 619 

half a century, and it has been used to document shifts in community composition with decreased 620 

abundance of dinoflagellates and increases of some diatoms, including Pseudo-nitzschia, which were 621 

attributed to increased sea surface temperatures and stronger stratification (Hinder et al. 2012). CPR data 622 

were used to identify increases in warm-water phytoplankton and zooplankton species and decreases in 623 

cold-water species that were correlated with sea surface temperature in the northeastern Atlantic, air 624 

temperature in the Northern Hemisphere, and the NAO (Beaugrand and Reid 2003). Northward shifts in 625 

community composition in a coupled physical and biogeochemical model that were consistent with CPR 626 

observations were used to diagnose the processes leading to the changes, and showed that in addition to 627 

warmer temperatures that changes in circulation and stratification contributed to the patterns in the model 628 

(Barton et al. 2016).  629 

To be useful for assessing climate impacts on biological systems, models must be able to distinguish the 630 

response to climate variability from internal biological dynamics (Lehodey et al. 2006), and ideally HAB 631 

models of climate response should help in identifying similar responses among different regions. 632 

Successful modeling approaches can be transferred to new regions, but requires accounting for 633 

similarities and differences in the physical environment, ecosystem characteristics, and HAB population, 634 

all of which are multi-dimensional and difficult to quantify without observations. Identifying climate 635 

effects in observations requires at least several decades of consistent HAB monitoring, and yet few 636 

regions have such high-quality time series data, nor is there monitoring in regions where future outbreaks 637 

may occur (Anderson et al. 2015; Wells et al. 2015). In addition to climate change, anthropogenic 638 

stressors such as fishing pressure, nutrient inputs, and invasive species introduction increase the 639 

challenges of identifying trends in observations of HAB abundance and distribution. Nutrient inputs have 640 

increased more than ten-fold in some coastal regions over the past few decades with usage of synthetic 641 

nitrogen fertilizer usage and urbanization, but the impacts vary widely (Howarth 2008). Projecting future 642 

nutrient conditions may require accounting for regional increases or decreases in nutrient loading with 643 

watershed land-use changes (Bouwman et al. 2009; Glibert et al. 2010) in addition to physical changes in 644 

the nutrient delivery by river discharge or coastal upwelling that are incorporated in models of HAB 645 
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dynamics presently. Shifts in nutrient inputs by eutrophication or climate change may also affect nutrient 646 

limitation and require incorporating currencies in addition to nitrogen into HAB models (Flynn and 647 

McGillicuddy 2018).  648 

While it is generally accepted that HABs are globally increasing in severity and extent, the role of climate 649 

change in the observed trends has been challenging to isolate mechanistically among the many other 650 

contributing factors (Moore et al. 2008). HAB models applied retrospectively at climate time scales may 651 

provide a useful means of hypothesis testing as opposed to focusing on predictions of future impacts. As 652 

has been done with observations (Moore et al. 2011), weather events, anomalous seasonal conditions, or 653 

sharp changes in forcing can be simulated retrospectively with HAB models as analogues for climate 654 

change impacts. Such scenarios can more realistically incorporate multiple stressors, and allow for 655 

quantitative assessment of model performance and uncertainty using observations that are independent 656 

from the model calibration. For example, laboratory studies have found that growth rates for Alexandrium 657 

spp. increase up to 20-24 °C (Watras et al. 1982; Etheridge and Roesler 2005; Bill et al. 2016), suggesting 658 

that warmer water will lead to faster growth and greater bloom intensity. Observations of A. catenella in 659 

an estuary in the northeastern U.S. found that the blooms in warmer years occurred earlier but did not 660 

have longer duration or greater maximum cell abundance, and instead the blooms terminated before water 661 

temperatures reached the values corresponding with maximum growth rates from the laboratory (Ralston 662 

et al. 2014). A process-based, single-species model that used the laboratory growth rates could effectively 663 

reproduce the growth phase across multiple years with widely varying temperature conditions, but an 664 

empirical formulation for mortality that was not strictly temperature-dependent was needed to represent 665 

bloom termination across the years, and could only be calibrated based on comparison with the multi-year 666 

observations (Ralston et al. 2015). Bloom dynamics in that system remained similar enough over several 667 

years that the empirical formulation for mortality had predictive skill, but climate change can potentially 668 

induce more fundamental shifts in ecosystem dynamics, for example changing from bottom-up (nutrient 669 

availability regulating growth) to top-down (grazing control) control (Wells et al. 2015). Developing 670 

robust models of the interactions between HAB growth rates and grazer response under changing forcing 671 

conditions, particularly when the relationships may be strongly non-linear, remains a central challenge for 672 

HAB modeling across all simulation time scales (Flynn and McGillicuddy 2018).  673 

5. Conclusions 674 

Modeling HAB response to future climate change is still an emerging field, as evidenced by the limited 675 

number of studies (fewer than 10) and diversity of approaches reviewed here. Extending HAB models to 676 

decadal time scales or longer, extrapolating into forcing regimes that are outside historical observations, 677 

representing potential regime shifts in the dominant processes controlling HAB development, and 678 
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incorporating uncertainty and variability in physical climate model projections are challenging but 679 

feasible tasks. Based on this review, we offer several recommendations for how to best move forward 680 

with modeling HAB response to climate change. Statistical models have predominantly been used for 681 

near-term and operational HAB forecasts, but the uncertainty in model output increases as forcing 682 

conditions diverge from the historical observations that were used to develop them. Process-based models 683 

more directly represent key physical and biological factors in bloom development, and thus are better 684 

suited to extrapolation into future climate forcing conditions. HAB models should be developed in the 685 

context of the ecosystem response to climate change, recognizing that the response of many key processes 686 

and the potential for regime shifts are common to the broader ecosystem. Uncertainty in HAB model 687 

projections associated with process formulations or climate model forcing should be quantified and 688 

conveyed using ensemble approaches and scenario planning. Downscaling of global (and potentially 689 

regional) climate models to coastal scales should be done robustly in collaboration with physical climate 690 

modelers to preserve features of the forcing that are key to HAB development. Finally, long-term 691 

observations of HABs and forcing conditions are essential to identify trends associated with climate 692 

change and for rigorously assessing HAB model results. Long-term observations are critically lacking in 693 

many HAB impacted regions, and this may represent the biggest impediment to the development of 694 

models that can effectively assess HAB response to climate change. Multiple decades of HAB monitoring 695 

are often necessary to distinguish long-term trends from the response to cyclic climate forcing, so any 696 

model-based assessment of HAB response to climate change needs to be closely coupled to high quality 697 

observations. Modeling studies of HAB response to climate change will likely expand as resource 698 

managers and policy makers increasingly demand projections of HAB impacts at both near-term and 699 

longer time scales. As such, HAB models will be crucial for informing the development of strategies to 700 

reduce socioeconomic and public health impacts as well as to increase resilience of socioecological 701 

systems to future HABs. 702 

Acknowledgements 703 

Support for DKR was provided through the Woods Hole Center for Oceans and Human Health with 704 
grants from the National Science Foundation (OCE-1314642 and OCE-1840381) and the National 705 
Institute of Environmental Health Sciences (P01ES021923 and P01ES028938). SKM was supported by 706 
the Northwest Fisheries Science Center, National Marine Fisheries Service. The authors thank Dennis 707 
McGillicuddy for valuable input, and Greg Williams for helpful comments on the manuscript.  708 

References 709 

Álvarez-Salgado, X. A., U. Labarta, M. J. Fernández-Reiriz, F. G. Figueiras, G. Rosón, S. Piedracoba, R. 710 
Filgueira, and J. M. Cabanas. 2008. Renewal time and the impact of harmful algal blooms on the 711 
extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe). Harmful 712 
Algae 7: 849–855. doi:10.1016/j.hal.2008.04.007. 713 



23 
 

 
 

Anderson, Clarissa R., Stephanie K. Moore, Michelle C. Tomlinson, Joe Silke, and Caroline K. Cusack. 714 
2015. Chapter 17 - Living with Harmful Algal Blooms in a Changing World: Strategies for 715 
Modeling and Mitigating Their Effects in Coastal Marine Ecosystems. In Coastal and Marine 716 
Hazards, Risks, and Disasters, ed. John F. Shroder, Jean T. Ellis, and Douglas J. Sherman, 495–717 
561. Boston: Elsevier. doi:10.1016/B978-0-12-396483-0.00017-0. 718 

Anderson, Clarissa R., Mathew R. P. Sapiano, M. Bala Krishna Prasad, Wen Long, Peter J. Tango, 719 
Christopher W. Brown, and Raghu Murtugudde. 2010. Predicting potentially toxigenic Pseudo-720 
nitzschia blooms in the Chesapeake Bay. Journal of Marine Systems 83. GEOHAB Modeling: 127–721 
140. doi:10.1016/j.jmarsys.2010.04.003. 722 

Anderson, Clarissa R., David A. Siegel, Raphael M. Kudela, and Mark A. Brzezinski. 2009. Empirical 723 
models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the 724 
Santa Barbara Channel. Harmful Algae 8: 478–492. doi:10.1016/j.hal.2008.10.005. 725 

Barton, Andrew D., Andrew J. Irwin, Zoe V. Finkel, and Charles A. Stock. 2016. Anthropogenic climate 726 
change drives shift and shuffle in North Atlantic phytoplankton communities. Proceedings of the 727 
National Academy of Sciences 113: 2964–2969. doi:10.1073/pnas.1519080113. 728 

Beaugrand, Grégory, and Philip C. Reid. 2003. Long-term changes in phytoplankton, zooplankton and 729 
salmon related to climate. Global Change Biology 9: 801–817. doi:10.1046/j.1365-730 
2486.2003.00632.x. 731 

Bell, David M., and Daniel R. Schlaepfer. 2016. On the dangers of model complexity without ecological 732 
justification in species distribution modeling. Ecological Modelling 330: 50–59. 733 
doi:10.1016/j.ecolmodel.2016.03.012. 734 

Bill, Brian D., Stephanie K. Moore, Levi R. Hay, Donald M. Anderson, and Vera L. Trainer. 2016. Effects of 735 
temperature and salinity on the growth of Alexandrium (Dinophyceae) isolates from the Salish 736 
Sea. Journal of Phycology 52: 230–238. doi:10.1111/jpy.12386. 737 

Bouwman, A. F., A. H. W. Beusen, and G. Billen. 2009. Human alteration of the global nitrogen and 738 
phosphorus soil balances for the period 1970–2050. Global Biogeochemical Cycles 23. 739 
doi:10.1029/2009GB003576. 740 

Boyce, Daniel G., Marlon R. Lewis, and Boris Worm. 2010. Global phytoplankton decline over the past 741 
century. Nature 466: 591–596. doi:10.1038/nature09268. 742 

Brown, C. W., R. R. Hood, W. Long, J. Jacobs, D. L. Ramers, C. Wazniak, J. D. Wiggert, R. Wood, and J. Xu. 743 
2013. Ecological forecasting in Chesapeake Bay: Using a mechanistic–empirical modeling 744 
approach. Journal of Marine Systems 125. Advances in Marine Ecosystem Modelling Research III: 745 
113–125. doi:10.1016/j.jmarsys.2012.12.007. 746 

Brown, Larry R., Lisa M. Komoroske, R. Wayne Wagner, Tara Morgan-King, Jason T. May, Richard E. 747 
Connon, and Nann A. Fangue. 2016. Coupled Downscaled Climate Models and Ecophysiological 748 
Metrics Forecast Habitat Compression for an Endangered Estuarine Fish. PLOS ONE 11: 749 
e0146724. doi:10.1371/journal.pone.0146724. 750 

Cusack, Caroline, Tomasz Dabrowski, Kieran Lyons, Alan Berry, Guy Westbrook, Rafael Salas, Conor 751 
Duffy, Glenn Nolan, and Joe Silke. 2016. Harmful algal bloom forecast system for SW Ireland. 752 
Part II: Are operational oceanographic models useful in a HAB warning system. Harmful Algae 753 
53. Applied Simulations and Integrated Modelling for the Understanding of Toxic and Harmful 754 
Algal Blooms (ASIMUTH): 86–101. doi:10.1016/j.hal.2015.11.013. 755 

Cusack, Caroline, Helena Mouriño, Maria Teresa Moita, and Joe Silke. 2015. Modelling Pseudo-nitzschia 756 
events off southwest Ireland. Journal of Sea Research 105: 30–41. 757 
doi:10.1016/j.seares.2015.06.012. 758 

Díaz, Patricio A., Manuel Ruiz-Villarreal, Yolanda Pazos, Teresa Moita, and Beatriz Reguera. 2016. 759 
Climate variability and Dinophysis acuta blooms in an upwelling system. Harmful Algae 53. 760 



24 
 

 
 

Applied Simulations and Integrated Modelling for the Understanding of Toxic and Harmful Algal 761 
Blooms (ASIMUTH): 145–159. doi:10.1016/j.hal.2015.11.007. 762 

Ducklow, Hugh W., Scott C. Doney, and Deborah K. Steinberg. 2009. Contributions of Long-Term 763 
Research and Time-Series Observations to Marine Ecology and Biogeochemistry. Annual Review 764 
of Marine Science 1: 279–302. doi:10.1146/annurev.marine.010908.163801. 765 

Erdner, Deana L., Julianne Dyble, Michael L. Parsons, Richard C. Stevens, Katherine A. Hubbard, Michele 766 
L. Wrabel, Stephanie K. Moore, Kathi A. Lefebvre, Donald M. Anderson, and Paul Bienfang. 2008. 767 
Centers for Oceans and Human Health: a unified approach to the challenge of harmful algal 768 
blooms. In Environmental Health, 7:S2. BioMed Central. 769 

Etheridge, Stacey M., and Collin S. Roesler. 2005. Effects of temperature, irradiance, and salinity on 770 
photosynthesis, growth rates, total toxicity, and toxin composition for Alexandrium fundyense 771 
isolates from the Gulf of Maine and Bay of Fundy. Deep Sea Research II 52: 2491–2500. 772 
doi:10.1016/j.dsr2.2005.06.026. 773 

Flynn, Kevin J., and Dennis J. McGillicuddy. 2018. Modeling Marine Harmful Algal Blooms: Current Status 774 
and Future Prospects. In Harmful Algal Blooms, 115–134. John Wiley & Sons, Ltd. 775 
doi:10.1002/9781118994672.ch3. 776 

Franks, Peter J. S. 2018. Recent Advances in Modelling of Harmful Algal Blooms. In Global Ecology and 777 
Oceanography of Harmful Algal Blooms, ed. Patricia M. Glibert, Elisa Berdalet, Michele A. 778 
Burford, Grant C. Pitcher, and Mingjiang Zhou, 359–377. Ecological Studies. Cham: Springer 779 
International Publishing. doi:10.1007/978-3-319-70069-4_19. 780 

Fu, Fx, Ao Tatters, and Da Hutchins. 2012. Global change and the future of harmful algal blooms in the 781 
ocean. Marine Ecology Progress Series 470: 207–233. doi:10.3354/meps10047. 782 

Giddings, S. N., P. MacCready, B. M. Hickey, N. S. Banas, K. A. Davis, S. A. Siedlecki, V. L. Trainer, R. M. 783 
Kudela, N. A. Pelland, and T. P. Connolly. 2014. Hindcasts of potential harmful algal bloom 784 
transport pathways on the Pacific Northwest coast. Journal of Geophysical Research: Oceans: 785 
n/a-n/a. doi:10.1002/2013JC009622. 786 

Gillibrand, P. A., B. Siemering, P. I. Miller, and K. Davidson. 2016. Individual-based modelling of the 787 
development and transport of a Karenia mikimotoi bloom on the North-west European 788 
continental shelf. Harmful Algae 53. Applied Simulations and Integrated Modelling for the 789 
Understanding of Toxic and Harmful Algal Blooms (ASIMUTH): 118–134. 790 
doi:10.1016/j.hal.2015.11.011. 791 

Glibert, Patricia M., J. Icarus Allen, Yuri Artioli, Arthur Beusen, Lex Bouwman, James Harle, Robert 792 
Holmes, and Jason Holt. 2014. Vulnerability of coastal ecosystems to changes in harmful algal 793 
bloom distribution in response to climate change: projections based on model analysis. Global 794 
Change Biology 20: 3845–3858. doi:10.1111/gcb.12662. 795 

Glibert, Patricia M., J. Icarus Allen, A. F. Bouwman, Christopher W. Brown, Kevin J. Flynn, Alan J. Lewitus, 796 
and Christopher J. Madden. 2010. Modeling of HABs and eutrophication: Status, advances, 797 
challenges. Journal of Marine Systems 83. GEOHAB Modeling: 262–275. 798 
doi:10.1016/j.jmarsys.2010.05.004. 799 

González Vilas, Luis, Evangelos Spyrakos, Jesus M. Torres Palenzuela, and Yolanda Pazos. 2014. Support 800 
Vector Machine-based method for predicting Pseudo-nitzschia spp. blooms in coastal waters 801 
(Galician rias, NW Spain). Progress in Oceanography 124: 66–77. 802 
doi:10.1016/j.pocean.2014.03.003. 803 

Hallegraeff, Gustaaf M. 2010. Ocean climate change, phytoplankton community responses, and harmful 804 
algal blooms: A formidable predictive challenge. Journal of Phycology 46: 220–235. 805 
doi:10.1111/j.1529-8817.2010.00815.x. 806 



25 
 

 
 

Hare, Jonathan A., Michael A. Alexander, Michael J. Fogarty, Erik H. Williams, and James D. Scott. 2010. 807 
Forecasting the dynamics of a coastal fishery species using a coupled climate–population model. 808 
Ecological Applications 20: 452–464. 809 

Haylock, Malcolm R., Gavin C. Cawley, Colin Harpham, Rob L. Wilby, and Clare M. Goodess. 2006. 810 
Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and 811 
statistical methods and their future scenarios. International Journal of Climatology: A Journal of 812 
the Royal Meteorological Society 26: 1397–1415. 813 

Henrichs, Darren W., Robert D. Hetland, and Lisa Campbell. 2015. Identifying bloom origins of the toxic 814 
dinoflagellate Karenia brevis in the western Gulf of Mexico using a spatially explicit individual-815 
based model. Ecological Modelling 313: 251–258. doi:10.1016/j.ecolmodel.2015.06.038. 816 

Hidalgo, Hugo G., Michael D. Dettinger, and Daniel R. Cayan. 2008. Downscaling with constructed 817 
analogues: Daily precipitation and temperature fields over the United States. California Energy 818 
Commission PIER Final Project Report CEC-500-2007-123. 819 

Hinder, Stephanie L., Graeme C. Hays, Martin Edwards, Emily C. Roberts, Anthony W. Walne, and Mike 820 
B. Gravenor. 2012. Changes in marine dinoflagellate and diatom abundance under climate 821 
change. Nature Climate Change 2: 271–275. doi:10.1038/nclimate1388. 822 

Hollowed, Anne Babcock, Nicholas A. Bond, Thomas K. Wilderbuer, William T. Stockhausen, Z. Teresa 823 
A’mar, Richard J. Beamish, James E. Overland, and Michael J. Schirripa. 2009. A framework for 824 
modelling fish and shellfish responses to future climate change. ICES Journal of Marine Science 825 
66: 1584–1594. 826 

Holt, Jason, Patrick Hyder, Mike Ashworth, James Harle, Helene T. Hewitt, Hedong Liu, Adrian L. New, et 827 
al. 2017. Prospects for improving the representation of coastal and shelf seas in global ocean 828 
models. Geoscientific Model Development 10: 499–523. doi:https://doi.org/10.5194/gmd-10-829 
499-2017. 830 

Howarth, Robert W. 2008. Coastal nitrogen pollution: A review of sources and trends globally and 831 
regionally. Harmful Algae 8. HABs and Eutrophication: 14–20. doi:10.1016/j.hal.2008.08.015. 832 

Jacobs, John, Stephanie K. Moore, Kenneth E. Kunkel, and Liqiang Sun. 2015. A framework for examining 833 
climate-driven changes to the seasonality and geographical range of coastal pathogens and 834 
harmful algae. Climate Risk Management 8: 16–27. doi:10.1016/j.crm.2015.03.002. 835 

Kibler, Steven R., Patricia A. Tester, Kenneth E. Kunkel, Stephanie K. Moore, and R. Wayne Litaker. 2015. 836 
Effects of ocean warming on growth and distribution of dinoflagellates associated with ciguatera 837 
fish poisoning in the Caribbean. Ecological Modelling 316: 194–210. 838 
doi:10.1016/j.ecolmodel.2015.08.020. 839 

Lane, Jenny Q., Peter T. Raimondi, and Raphael M. Kudela. 2009. Development of a logistic regression 840 
model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. 841 
Marine Ecology Progress Series 383: 37–51. doi:10.3354/meps07999. 842 

Lehodey, P., J. Alheit, M. Barange, T. Baumgartner, G. Beaugrand, K. Drinkwater, J.-M. Fromentin, et al. 843 
2006. Climate Variability, Fish, and Fisheries. Journal of Climate 19: 5009–5030. 844 
doi:10.1175/JCLI3898.1. 845 

Li, Yizhen, Ruoying He, Dennis J. McGillicuddy Jr., Donald M. Anderson, and Bruce A. Keafer. 2009. 846 
Investigation of the 2006 Alexandrium fundyense bloom in the Gulf of Maine: In-situ 847 
observations and numerical modeling. Continental Shelf Research 29: 2069–2082. 848 
doi:10.1016/j.csr.2009.07.012. 849 

Maguire, Julie, Caroline Cusack, Manuel Ruiz-Villarreal, Joe Silke, Deirdre McElligott, and Keith Davidson. 850 
2016. Applied simulations and integrated modelling for the understanding of toxic and harmful 851 
algal blooms (ASIMUTH): Integrated HAB forecast systems for Europe’s Atlantic Arc. Harmful 852 
Algae 53. Applied Simulations and Integrated Modelling for the Understanding of Toxic and 853 
Harmful Algal Blooms (ASIMUTH): 160–166. doi:10.1016/j.hal.2015.11.006. 854 



26 
 

 
 

McCabe, Ryan M., Barbara M. Hickey, Raphael M. Kudela, Kathi A. Lefebvre, Nicolaus G. Adams, Brian D. 855 
Bill, Frances M. D. Gulland, Richard E. Thomson, William P. Cochlan, and Vera L. Trainer. 2016. 856 
An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. 857 
Geophysical Research Letters 43: 10,366-10,376. doi:10.1002/2016GL070023. 858 

McGillicuddy, D. J. 2010. Models of harmful algal blooms: Conceptual, empirical, and numerical 859 
approaches. Journal of Marine Systems 83. GEOHAB Modeling: 105–107. 860 
doi:10.1016/j.jmarsys.2010.06.008. 861 

McGillicuddy, D. J., D. W. Townsend, R. He, B. A. Keafer, J. L. Kleindinst, Y. Li, J. P. Manning, D. G. 862 
Mountain, M. A. Thomas, and Donald M. Anderson. 2011. Suppression of the 2010 Alexandrium 863 
fundyense bloom by changes in physical, biological, and chemical properties of the Gulf of 864 
Maine. Limnology and Oceanography 56: 2411–2426. 865 

McKibben, S. Morgaine, Katie S. Watkins-Brandt, A. Michelle Wood, Matthew Hunter, Zach Forster, 866 
Alyssa Hopkins, Xiuning Du, Bich-Thuy Eberhart, William T. Peterson, and Angelicque E. White. 867 
2015. Monitoring Oregon Coastal Harmful Algae: Observations and implications of a harmful 868 
algal bloom-monitoring project. Harmful Algae 50: 32–44. doi:10.1016/j.hal.2015.10.004. 869 

Meier, H. E. M., H. C. Andersson, K. Eilola, B. G. Gustafsson, I. Kuznetsov, B. Müller-Karulis, T. Neumann, 870 
and O. P. Savchuk. 2011. Hypoxia in future climates: A model ensemble study for the Baltic Sea. 871 
Geophysical Research Letters 38. doi:10.1029/2011GL049929. 872 

Moe, S. Jannicke, Sigrid Haande, and Raoul-Marie Couture. 2016. Climate change, cyanobacteria blooms 873 
and ecological status of lakes: A Bayesian network approach. Ecological Modelling 337: 330–347. 874 
doi:10.1016/j.ecolmodel.2016.07.004. 875 

Moore, Stephanie K., James A. Johnstone, Neil S. Banas, and Eric P. Salathé. 2015. Present-day and 876 
future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA. Harmful Algae 877 
48: 1–11. doi:10.1016/j.hal.2015.06.008. 878 

Moore, Stephanie K., Nathan J. Mantua, Barbara M. Hickey, and Vera L. Trainer. 2009. Recent trends in 879 
paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of 880 
toxic events. Harmful Algae 8: 463–477. doi:10.1016/j.hal.2008.10.003. 881 

Moore, Stephanie K., Nathan J. Mantua, Barbara M. Hickey, and Vera L. Trainer. 2010. The relative 882 
influences of El Niño-Southern Oscillation and Pacific Decadal Oscillation on paralytic shellfish 883 
toxin accumulation in northwest Pacific shellfish. Limnology and Oceanography 55: 2262–2274. 884 

Moore, Stephanie K., Nathan J. Mantua, and Eric P. Salathé. 2011. Past trends and future scenarios for 885 
environmental conditions favoring the accumulation of paralytic shellfish toxins in Puget Sound 886 
shellfish. Harmful Algae 10: 521–529. doi:10.1016/j.hal.2011.04.004. 887 

Moore, Stephanie K., Vera L. Trainer, Nathan J. Mantua, Micaela S. Parker, Edward A. Laws, Lorraine C. 888 
Backer, and Lora E. Fleming. 2008. Impacts of climate variability and future climate change on 889 
harmful algal blooms and human health. Environmental Health 7: S4. doi:10.1186/1476-069X-7-890 
S2-S4. 891 

Muhling, Barbara A., Carlos F. Gaitán, Charles A. Stock, Vincent S. Saba, Desiree Tommasi, and Keith W. 892 
Dixon. 2018. Potential Salinity and Temperature Futures for the Chesapeake Bay Using a 893 
Statistical Downscaling Spatial Disaggregation Framework. Estuaries and Coasts 41: 349–372. 894 
doi:10.1007/s12237-017-0280-8. 895 

Muhling, Barbara A., John Jacobs, Charles A. Stock, Carlos F. Gaitan, and Vincent S. Saba. 2017. 896 
Projections of the future occurrence, distribution, and seasonality of three Vibrio species in the 897 
Chesapeake Bay under a high-emission climate change scenario. GeoHealth 1: 278–296. 898 
doi:10.1002/2017GH000089. 899 

Raine, Robin, Georgina McDermott, Joe Silke, Kieran Lyons, Glenn Nolan, and Caroline Cusack. 2010. A 900 
simple short range model for the prediction of harmful algal events in the bays of southwestern 901 



27 
 

 
 

Ireland. Journal of Marine Systems 83. GEOHAB Modeling: 150–157. 902 
doi:10.1016/j.jmarsys.2010.05.001. 903 

Ralston, David K., Michael L. Brosnahan, Sophia E. Fox, Krista D. Lee, and Donald M. Anderson. 2015. 904 
Temperature and Residence Time Controls on an Estuarine Harmful Algal Bloom: Modeling 905 
Hydrodynamics and Alexandrium fundyense in Nauset Estuary. Estuaries and Coasts: 1–19. 906 
doi:10.1007/s12237-015-9949-z. 907 

Ralston, David K., Bruce A. Keafer, Michael L. Brosnahan, and Donald M. Anderson. 2014. Temperature 908 
dependence of an estuarine harmful algal bloom: Resolving interannual variability in bloom 909 
dynamics using a degree-day approach. Limnology and Oceanography 59: 1112–1126. 910 
doi:10.4319/lo.2014.59.4.1112. 911 

Ruiz-Villarreal, Manuel, Luz M. García-García, Marcos Cobas, Patricio A. Díaz, and Beatriz Reguera. 2016. 912 
Modelling the hydrodynamic conditions associated with Dinophysis blooms in Galicia (NW 913 
Spain). Harmful Algae 53. Applied Simulations and Integrated Modelling for the Understanding 914 
of Toxic and Harmful Algal Blooms (ASIMUTH): 40–52. doi:10.1016/j.hal.2015.12.003. 915 

Sarmiento, J. L., R. Slater, R. Barber, L. Bopp, S. C. Doney, A. C. Hirst, J. Kleypas, et al. 2004. Response of 916 
ocean ecosystems to climate warming. Global Biogeochemical Cycles 18. 917 
doi:10.1029/2003GB002134. 918 

Sekula-Wood, Emily, Claudia Benitez-Nelson, Steve Morton, Clarissa Anderson, Christopher Burrell, and 919 
Robert Thunell. 2011. Pseudo-nitzschia and domoic acid fluxes in Santa Barbara Basin (CA) from 920 
1993 to 2008. Harmful Algae 10: 567–575. doi:10.1016/j.hal.2011.04.009. 921 

Star, Jonathan, Erika L. Rowland, Mary E. Black, Carolyn A. F. Enquist, Gregg Garfin, Catherine Hawkins 922 
Hoffman, Holly Hartmann, Katharine L. Jacobs, Richard H. Moss, and Anne M. Waple. 2016. 923 
Supporting adaptation decisions through scenario planning: Enabling the effective use of 924 
multiple methods. Climate Risk Management 13: 88–94. doi:10.1016/j.crm.2016.08.001. 925 

Steinacher, M., F. Joos, T. L. Frölicher, L. Bopp, P. Cadule, V. Cocco, S. C. Doney, et al. 2010. Projected 926 
21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7: 979–927 
1005. doi:https://doi.org/10.5194/bg-7-979-2010. 928 

Stock, Charles A., Michael A. Alexander, Nicholas A. Bond, Keith M. Brander, William W. L. Cheung, 929 
Enrique N. Curchitser, Thomas L. Delworth, et al. 2011. On the use of IPCC-class models to 930 
assess the impact of climate on Living Marine Resources. Progress in Oceanography 88: 1–27. 931 
doi:10.1016/j.pocean.2010.09.001. 932 

Stock, Charles A., Dennis J. McGillicuddy Jr., Andrew R. Solow, and Donald M. Anderson. 2005. 933 
Evaluating hypotheses for the initiation and development of Alexandrium fundyense blooms in 934 
the western Gulf of Maine using a coupled physical–biological model. Deep Sea Research Part II: 935 
Topical Studies in Oceanography 52: 2715–2744. doi:10.1016/j.dsr2.2005.06.022. 936 

Stumpf, Richard P., R. Wayne Litaker, Lyon Lanerolle, and Patricia A. Tester. 2008. Hydrodynamic 937 
accumulation of Karenia off the west coast of Florida. Continental Shelf Research 28. Ecology 938 
and Oceanography of Harmful Algal Blooms in Florida: 189–213. doi:10.1016/j.csr.2007.04.017. 939 

Stumpf, Richard P., Michelle C. Tomlinson, Julie A. Calkins, Barbara Kirkpatrick, Kathleen Fisher, Kate 940 
Nierenberg, Robert Currier, and Timothy T. Wynne. 2009. Skill assessment for an operational 941 
algal bloom forecast system. Journal of Marine Systems 76: 151–161. 942 
doi:10.1016/j.jmarsys.2008.05.016. 943 

Stumpf, Richard P., Timothy T. Wynne, David B. Baker, and Gary L. Fahnenstiel. 2012. Interannual 944 
Variability of Cyanobacterial Blooms in Lake Erie. PLOS ONE 7: e42444. 945 
doi:10.1371/journal.pone.0042444. 946 

Townhill, Bryony L., Jonathan Tinker, Miranda Jones, Sophie Pitois, Veronique Creach, Stephen D. 947 
Simpson, Stephen Dye, Elizabeth Bear, and John K. Pinnegar. 2018. Harmful algal blooms and 948 



28 
 

 
 

climate change: exploring future distribution changes. ICES Journal of Marine Science 75: 1882–949 
1893. doi:10.1093/icesjms/fsy113. 950 

Velo-Suárez, L., B. Reguera, S. González-Gil, M. Lunven, P. Lazure, E. Nézan, and P. Gentien. 2010. 951 
Application of a 3D Lagrangian model to explain the decline of a Dinophysis acuminata bloom in 952 
the Bay of Biscay. Journal of Marine Systems 83. GEOHAB Modeling: 242–252. 953 
doi:10.1016/j.jmarsys.2010.05.011. 954 

Watras, Carl J., Sallie W. Chisholm, and Donald M. Anderson. 1982. Regulation of growth in an estuarine 955 
clone of Gonyaulax tamarensis Lebour: Salinity-dependent temperature responses. Journal of 956 
Experimental Marine Biology and Ecology 62: 25–37. doi:10.1016/0022-0981(82)90214-3. 957 

Weinert, Michael, Moritz Mathis, Ingrid Kröncke, Hermann Neumann, Thomas Pohlmann, and Henning 958 
Reiss. 2016. Modelling climate change effects on benthos: Distributional shifts in the North Sea 959 
from 2001 to 2099. Estuarine, Coastal and Shelf Science 175: 157–168. 960 
doi:10.1016/j.ecss.2016.03.024. 961 

Wells, Mark L., Vera L. Trainer, Theodore J. Smayda, Bengt S. O. Karlson, Charles G. Trick, Raphael M. 962 
Kudela, Akira Ishikawa, et al. 2015. Harmful algal blooms and climate change: Learning from the 963 
past and present to forecast the future. Harmful Algae 49: 68–93. 964 
doi:10.1016/j.hal.2015.07.009. 965 

Wilby, Robert L., S. P. Charles, Eduardo Zorita, Bertrand Timbal, Penny Whetton, and L. O. Mearns. 2004. 966 
Guidelines for use of climate scenarios developed from statistical downscaling methods. 967 
Supporting material of the Intergovernmental Panel on Climate Change, available from the DDC 968 
of IPCC TGCIA 27. 969 

Wynne, Timothy T., Richard P. Stumpf, Michelle C. Tomlinson, David J. Schwab, Glen Y. Watabayashi, 970 
and John D. Christensen. 2011. Estimating cyanobacterial bloom transport by coupling remotely 971 
sensed imagery and a hydrodynamic model. Ecological Applications 21: 2709–2721. 972 
doi:10.1890/10-1454.1. 973 

Zhang, Wei, and Ben Kirtman. 2019. Estimates of Decadal Climate Predictability From an Interactive 974 
Ensemble Model. Geophysical Research Letters 46: 3387–3397. doi:10.1029/2018GL081307. 975 

 976 

  977 



29 
 

 
 

Figure 978 

Scenario planning

DOWNSCALED CLIMATE & 
OCEAN MODEL OUTPUT

Ecosystem
Response

PROCESS-
BASED HAB 
RESPONSE

Downscaling 
Approach 

(dynamical vs 
statistical)

Emissions 
Scenario / 
Relative 

Concentration 
Pathway

Global Earth 
Systems 
Model 

Selection

ENSEMBLE APPROACH

EVALUATE WITH 
LONG-TERM 

OBSERVATIONS

Evaluate 

uncertainty

 979 

Figure 1. Schematic diagram summarizing considerations for improving modeling of HAB response to 980 
climate change. Multiple global earth systems models, emissions scenarios/relative concentration 981 
pathways, and downscaling approaches should be considered in an ensemble approach to generate 982 
downscaled climate and ocean model output. Downscaling is necessary to resolve critical physical and 983 
biogeochemical processes for HAB development at coastal scales. These downscaled data should be used 984 
to force process-based models of HAB response with the results considered in an ecosystem context. 985 
Models should be evaluated with long-term observations. This step can be informative for selecting 986 
global models, identifying biases in downscaled model projections, and validating models of HAB and 987 
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ecosystem response. An important final step is to identify components of the model system that are key 988 
sources of uncertainty in the long-term HAB response (i.e., evaluate uncertainty) and to develop 989 
scenarios (i.e., scenario planning) around those sources of uncertainty in the development of societal 990 
response strategies. 991 
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Table 993 

Table 1. Table summarizing the HAB modeling studies reviewed here. Models are categorized based on whether they focus on present-day 994 
(hindcasts, event-based, near-term forecasts) or future climate conditions (using climate model projections) and the modeling approach (statistical, 995 
process-based, or a hybrid). Information on the HAB organism being modeled, geographic region, and a brief description of the model formulation 996 
and timescale are listed.  997 

 Present vs 

future climate  

Model type HAB organism Region Brief description 

Allen et al., 2008 Present Process-based High biomass species NW European shelf Ecosystem + circulation; seasonal 

Anderson et al., 2009 Present Statistical Pseudo-nitzschia California Regression; spatial + temporal; seasonal  

Anderson et al., 2010 Present Statistical Pseudo-nitzschia Chesapeake Bay Generalized linear regression; spatial + 
temporal; interannual 

Brown et al., 2013 Present Statistical Karlodinium, 

Prorcentrum, 

Microcystis 

Chesapeake Bay Neural network and logistic regression; 
spatial + temporal; interannual 

Cusack et al., 2015 Present Statistical Pseudo-nitzschia SW Ireland Zero-inflated negative binomial 
regression; interannual  

Cusack et al., 2016 Present Hybrid Pseudo-nitzschia SW Ireland Observations + particle tracking; near-
term 

Diaz et al, 2016 Present Statistical Dinophysis Portugal General additive model; interannual  

Giddings et al., 2014 Present Hybrid Pseudo-nitzschia Pacific NW Particle tracking + ecosystem; seasonal 
to interannual 

Gillibrand et al., 2016 Present Process-based Karenia mikimotoi Scotland IBM with growth; event 

González Vilas et al., 
2014 

Present Statistical Pseudo-nitzschia NW Spain Machine learning; spatial + temporal; 
interannual 

Henrichs et al., 2015 Present Process-based Karenia brevis Gulf of Mexico IBM with behavior; interannual 

Lane et al., 2009 Present Statistical Pseudo-nitzschia California Logistic regression; interannual  

Stock et al., 2005; Li et 
al., 2009 

Present Process-based Alexandrium Gulf of Maine Ecosystem + circulation; seasonal to 
interannual 

Moore et al., 2009 Present Statistical Alexandrium Puget Sound Regression + trend analysis; interannual  

Raine et al., 2010 Present Statistical Dinophysis  SW Ireland Based on wind index, near-term forecast 

Ralston et al., 2014 Present Process-based Alexandrium Cape Cod Local growth; seasonal to interannual  

Ralston et al., 2015 Present Process-based Alexandrium Cape Cod Ecosystem + circulation; seasonal to 
interannual 

Ruiz-Villarreal et al., 2016 Present Process-based Dinophysis NW Spain Particle tracking; seasonal to interannual 

Stumpf et al., 2008; Present Hybrid Karenia Gulf of Mexico Observations + particle tracking; near-
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Stumpf et al., 2009 term forecast 

Stumpf et al., 2012 Present Statistical Cyanobacteria Lake Erie Regression; spatial + temporal; seasonal 

Velo-Suarez et al., 2010 Present Process-based Dinophysis NW Spain Particle tracking; event 

Wynne et al., 2011 Present Process-based Microcystis  Lake Erie Particle tracking; event 

Gobler et al., 2017 Future Process-based Alexandrium, 

Dinophysis 

NE and NW 
Atlantic, NE Pacific, 
Alaska 

Growth rates (temperature) 

Jacobs et al., 2015 Future Process-based Alexandrium, Vibrio Chesapeake, Puget 
Sound, Alaska 

Growth rates/windows (temperature) 

Kibler et al., 2015 Future Process-based Gambierdiscus Caribbean Growth rates (temperature) 

Lin et al., 2018 Future Process-based Karlodinium Chesapeake Bay Growth rates (temperature, nutrients) 

Moe et al., 2016 Future Statistical Cyanobacteria Norway lake Bayesian network linking ecosystem and 
watershed models  

Moore et al., 2011 Future Statistical Alexandrium Puget Sound Regression + trend analysis; growth 
window 

Moore et al., 2015 Future Process-based Alexandrium Puget Sound Regional physical models; growth 
windows (temperature, salinity) 

Glibert et al., 2014 Future Process-based Prorocentrum, 

Karenia 

NW European 
shelf, NE Asia, SE 
Asia 

Regional physical + ecosystem models; 
habitat suitability (temperature, salinity, 
nutrients) 

Townhill et al., 2018 Future Statistical Pseudo-nitzschia, 

Alexandrium, 

Dinophysis 

NW European shelf Habitat suitability (temperature, salinity, 
bathymetry); maximum entropy 
approach 
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